Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. & Somero, G. N. Living with water stress: Evolution of osmolyte systems. Science 217, 1214–1222 (1982).
Google Scholar
Liao, Y.-T., Manson, A. C., DeLyser, M. R., Noid, W. G. & Cremer, P. S. Trimethylamine N-oxide stabilizes proteins via a distinct mechanism compared with betaine and glycine. Proc. Natl. Acad. Sci. USA 114, 2479–2484 (2017).
Google Scholar
Bennion, B. J. & Daggett, V. Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: A chemical chaperone at atomic resolution. Proc. Natl. Acad. Sci. USA 101, 6433–6438 (2004).
Google Scholar
Canchi, D. R., Jayasimha, P., Rau, D. C., Makhatadze, G. I. & Garcia, A. E. Molecular mechanism for the preferential exclusion of TMAO from protein surfaces. J. Phys. Chem. B 116, 12095–12104 (2012).
Google Scholar
Freda, M., Onori, G. & Santucci, A. Infrared study of the hydrophobic hydration and hydrophobic interactions in aqueous solutions of tert-butyl alcohol and trimethylamine-N-oxide. J. Phys. Chem. B 105, 12714–12718 (2001).
Google Scholar
Sinibaldi, R. et al. The role of water coordination in binary mixtures. A study of two model amphiphilic molecules in aqueous solutions by molecular dynamics and NMR. J. Phys. Chem. B 110, 8885–8892 (2006).
Google Scholar
Rezus, Y. L. A. & Bakker, H. J. Observation of immobilized water molecules around hydrophobic groups. Phys. Rev. Lett. 99, 148301 (2007).
Google Scholar
Qvist, J. & Halle, B. Thermal signature of hydrophobic hydration dynamics. J. Am. Chem. Soc. 130, 10345–10353 (2008).
Google Scholar
Panuszko, A., Bruździak, P., Zielkiewicz, J., Wyrzykowski, D. & Stangret, J. Effects of urea and trimethylamine-N-oxide on the properties of water and the secondary structure of hen egg white lysozyme. J. Phys. Chem. B 113, 14797–14809 (2009).
Google Scholar
Bakulin, A. A., Pshenichnikov, M. S., Bakker, H. J. & Petersen, C. Hydrophobic molecules slow down the hydrogen-bond dynamics of water. J. Phys. Chem. A 115, 1821–1829 (2011).
Google Scholar
Mazur, K., Heisler, I. A. & Meech, S. R. THz spectra and dynamics of aqueous solutions studied by the ultrafast optical Kerr effect. J. Phys. Chem. B 115, 2563–2573 (2011).
Google Scholar
Munroe, K. L., Magers, D. H. & Hammer, N. I. Raman spectroscopic signatures of noncovalent interactions between trimethylamine N-oxide (TMAO) and water. J. Phys. Chem. B 115, 7699–7707 (2011).
Google Scholar
Hunger, J., Tielrooij, K., Buchner, R., Bonn, M. & Bakker, H. J. Complex formation in aqueous trimethylamine-N-oxide (TMAO) solutions. J. Phys. Chem. B 116, 4783–4795 (2012).
Google Scholar
Ma, J., Pazos, I. M. & Gai, F. Microscopic insights into the protein-stabilizing effect of trimethylamine N-oxide (TMAO). Proc. Natl. Acad. Sci. USA 111, 8476–8481 (2014).
Google Scholar
Ganguly, P., Polák, J., van der Vegt, N. F. A., Heyda, J. & Shea, J.-E. Protein stability in TMAO and mixed urea–TMAO solutions. J. Phys. Chem. B 124, 6181–6197 (2020).
Google Scholar
Bandyopadhyay, D., Kamble, Y. & Choudhury, N. How different are the characteristics of aqueous solutions of tert-butyl alcohol and trimethylamine-N-oxide? A molecular dynamics simulation study. J. Phys. Chem. B 122, 8220–8232 (2018).
Google Scholar
Markthaler, D., Zeman, J., Baz, J., Smiatek, J. & Hansen, N. Validation of trimethylamine-N-oxide (TMAO) force fields based on thermophysical properties of aqueous TMAO solutions. J. Phys. Chem. B 121, 10674–10688 (2017).
Google Scholar
Paul, S. & Patey, G. N. Why tert-butyl alcohol associates in aqueous solution but trimethylamine-N-oxide does not. J. Phys. Chem. B 110, 10514–10518 (2006).
Google Scholar
Usui, K. et al. Ab initio liquid water dynamics in aqueous TMAO solution. J. Phys. Chem. B 119, 10597–10606 (2015).
Google Scholar
Imoto, S., Forbert, H. & Marx, D. Water structure and solvation of osmolytes at high hydrostatic pressure: Pure water and TMAO solutions at 10 kbar versus 1 bar. Phys. Chem. Chem. Phys. 17, 24224–24237 (2015).
Google Scholar
Stirnemann, G., Duboué-Dijon, E. & Laage, D. Ab initio simulations of water dynamics in aqueous TMAO solutions: Temperature and concentration effects. J. Phys. Chem. B 121, 11189–11197 (2017).
Google Scholar
Imoto, S., Forbert, H. & Marx, D. Aqueous TMAO solutions as seen by theoretical THz spectroscopy: Hydrophilic versus hydrophobic water. Phys. Chem. Chem. Phys. 20, 6146–6158 (2018).
Google Scholar
Xie, W. J. et al. Large hydrogen-bond mismatch between TMAO and urea promotes their hydrophobic association. Chem 4, 2615–2627 (2018).
Google Scholar
Sahle, C. J. et al. Hydration in aqueous osmolyte solutions: The case of TMAO and urea. Phys. Chem. Chem. Phys. 22, 11614–11624 (2020).
Google Scholar
Ghosh, D. et al. Noncovalent interactions in extended systems described by the effective fragment potential method: Theory and application to nucleobase oligomers. J. Phys. Chem. A 114, 12739–12754 (2010).
Google Scholar
Mori, H., Hirayama, N., Komeiji, Y. & Mochizuki, Y. Differences in hydration between cis-and trans-platin: Quantum insights by ab initio fragment molecular orbital-based molecular dynamics (FMO-MD). Comput. Theor. Chem. 986, 30–34 (2012).
Google Scholar
Matsuda, A. & Mori, H. Theoretical study on the hydration structure of divalent radium ion using fragment molecular orbital-molecular dynamics (FMO-MD) simulation. J. Solution Chem. 43, 1669–1675 (2014).
Google Scholar
Kuroki, N. & Mori, H. Effective fragment potential version 2-molecular dynamics (EFP2-MD) simulation for investigating solution structures of ionic liquids. Chem. Lett. 45, 1009–1011 (2016).
Google Scholar
Kuroki, N. & Mori, H. Applicability of effective fragment potential version 2-molecular dynamics (EFP2-MD) simulations for predicting excess properties of mixed solvents. Chem. Phys. Lett. 694, 82–85 (2018).
Google Scholar
Kuroki, N. & Mori, H. Applicability of effective fragment potential version 2-molecular dynamics (EFP2-MD) simulations for predicting dynamic liquid properties including the supercritical fluid phase. J. Phys. Chem. B 123, 194–200 (2019).
Google Scholar
Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, Inc, 2019).
Dunning, T. H. Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).
Google Scholar
Lee, T. J. & Taylor, P. R. A diagnostic for determining the quality of single-reference electron correlation methods. Int. J. Quant. Chem. 36, 199–207 (1989).
Google Scholar
Schmidt, M. W. et al. General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993).
Google Scholar
Su, P. & Li, H. Energy decomposition analysis of covalent bonds and intermolecular interactions. J. Chem. Phys. 131, 014102 (2009).
Google Scholar
Harris, K. R. & Woolf, L. A. Pressure and temperature dependence of the self diffusion coefficient of water and oxygen-18 water. J. Chem. Soc. Faraday Trans. 1 76, 377–385 (1980).
Google Scholar
Clark, M. E., Burnell, E. E., Chapman, N. R. & Hinke, J. A. Water in barnacle muscle. IV. Factors actors contributing to reduced self-diffusion. Biophys. J. 39, 289–299 (1982).
Google Scholar
Luzar, A. & Chandler, D. Hydrogen-bond kinetics in liquid water. Nature 379, 55–57 (1996).
Google Scholar
[ad_2]
Originally Appeared Here