Herranz, L. E. et al. Overview and outcomes of the OECD/NEA Phase 2: results of severe accident analysis for Unit 1. Nucl. Eng. Des. 369, 110849 (2020).
Google Scholar
Sonnenkalb, M. et al. Overview and outcome of the OECD/NEA benchmark study of the accident at the Fukushima Daiichi NPS (BSAF), phase 2: results of the severe accident analysis for Unit 2. Nucl. Eng. Des. 369, 110840 (2020).
Google Scholar
Lind, T. et al. Overview and outcome of the OECD/NEA benchmark study of the accident at the Fukushima Daiichi NPS (BSAF), phase 2 -Results of the severe accident analysis for Unit 3. Nucl. Eng. Des. 376, 111138 (2021).
Google Scholar
Pellegrini, M., Naitoh, M., Kudo, Y. & Mizokami, S. Confirmation of severe accident code modeling in light of the findings at Fukushima Daiichi NPPs. Nucl. Eng. Des. 354, 110217 (2019).
Google Scholar
Tamaki, H., Ishikawa J., Sugiyama, T., Maruyama, Y. Analysis for the accident at Unit 1 of the Fukushima Daiichi NPS with THALES2/KICHE code in BSAF2 project. Proceedings of 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18). 2019, 72–82.
Tamaki, H., Ishikawa J., Sugiyama, T., Maruyama, Y. Analysis for the accident at Unit 2 of the Fukushima Daiichi NPS with THALES2/KICHE code in BSAF2 project. Proceedings of 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18). 2019, 100–111.
Ishikawa J., Tamaki, H., Sugiyama, T., Maruyama, Y. Analysis for the accident at Unit 3 of the Fukushima Daiichi NPS with THALES2/KICHE code in BSAF2 project. Proceedings of 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18). 2019, 536–547.
Song, J. H. & Kim, T. W. Severe accident issues raised by the Fukushima accident and improvements suggested. Nucl. Eng. Technol. 46(2), 207–216 (2014).
Google Scholar
Pontillon, Y. et al. Fission products and nuclear fuel behavior under sever accident conditions part 1: main lessons learnt from the first VERDON test. J. Nucl. Mater. 495, 363–384 (2017).
Google Scholar
Geiger, E. et al. Fission products and nuclear fuel behavior under sever accident conditions part 2: Fuel behavior in the VERDON-1 sample. J. Nucl. Mater. 495, 349–357 (2017).
Gall, C. L. et al. Fission product speciation in the VERDON-3 and VERDON-4 MOX fuels samples. J. Nucl. Mater. 530, 151948 (2020).
Gallais-During, A. et al. Overview of the VERDON-ISTP program and main insights from the VERDON-2 air ingress test. Ann. Nucl. Energy 101, 109–117 (2017).
Google Scholar
Shiotsu, H., Ito, H., Ishikawa, J., Sugiyama, T., Maruyama, Y. Analysis of transport behaviors of cesium and iodine in VERDON-2 experiment for chemical model validation. Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) Busan, Korea, November 18–21, 2018.
Shiotsu, H., Ishikawa, J., Sugiyama, T. & Maruyama, Y. Influence of chemical speciation in reactor cooling system on pH of suppression pool during BWR severe accident. J. Nucl. Sci. Technol. 55(4), 363–373 (2018).
Google Scholar
Knebel, K., Jokiniemi, J. & Bottomley, P. D. A review of revaporisation behavior of radioactive Cs deposit and its impact on the source term in sever nuclear accidents from Phebus FP results and single effect testing. J. Nucl. Sci. Technol. 56(9–10), 772–789 (2019).
Google Scholar
Walles, G., Raison, P. E., Smith, A. L., Clavier, N. & Dacheux, N. High-temperature behavior of dicesium molybdate Cs2MoO4: Implications for fast neutron reactors. J. Solid State Chem. 215, 225–230 (2014).
Google Scholar
Dubourg, R., Faure-Geors, H., Nicaise, G. & Barrachin, M. Fission product release in the first two PHEBUS tests FPT0 and FPT1. Nucl. Eng. Des. 235, 2183–2208 (2005).
Google Scholar
Gregoire, A. C. et al. Sutdies on the role of molybdenum on iodine transport in the RCS in nuclear severe accident conditions. Ann. Nucl. Energy 78, 117–129 (2015).
Google Scholar
Miwa, S. et al. Development of fission product chemistry database ECUME for the LWR severe accident. Mech. Eng. J. 7(3), 19–00537 (2020).
Google Scholar
Miyahara, N. et al. Experimental study on transport behavior of cesium iodine in the reactor coolant system under LWR severe accident conditions. J. Nucl. Sci. Technol. 57(12), 1287–1296 (2020).
Google Scholar
Rizaal, M., Nakajima, K., Saito, T., Osaka, M. & Okamoto, K. Investigation of high-temperature chemical interaction of calcium silicate insulation and cesium hydroxide. J. Nucl. Sci. Thecnol. 57(9), 1062–1073 (2020).
Google Scholar
Kobata, M. et al. Chemical form analysis of reaction products in Cs-adsorption on stainless steel by means of HAXPES and SEM/EDX. J. Nucl. Mater. 498, 687–394 (2018).
Maeda, K. et al. Distribution of radioactive nuclides of boring core samples extracted from concrete structure of reactor buildings in the Fukushima Daiichi Nuclear Power Plant. J. Nucl. Sci Technol. 51(7–8), 1006–1023 (2014).
Google Scholar
Adachi, K., Kajino, M., Zaizenm, Y. & Igarashi, Y. Emission of spherical cesium-bearing particles from an early stage of the Fukushima Nuclear accident. Sci. Rep. 3, 2554. https://doi.org/10.1038/srep02554 (2013).
Google Scholar
Igarashi, Y. et al. A review of Cs-bearing microparticles in the environment emitted by the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 205–206, 101–118 (2019).
Google Scholar
Furuki, G., Imoto, J., Ochiai, A., Yamasaki, S., Nanba, K., Ohnuki, T., Grambow, B., Ewing, R.C., Utsunomiya, S. Caesium-rich micro-particles: a window into the meltdown events at the Fukushima Daiichi Nuclear Power Plant. Sci. Rep. 2017, 1. doi:https://doi.org/10.1038/srep42731.
Chino, M. et al. Utilization of 134Cs/137Cs in the environment to identify the reactor units that caused atmospheric releases during the Fukushima Daiichi accident. Sci. Rep. https://doi.org/10.1038/srep31376 (2016).
Google Scholar
Kobayashi, S., Shinomiya, T., Ishikawa, T., Imaseki, H., Iwaoka, K., Kitamura, H., Kodaira, S., Kobayashi, K., Oikawa, M., Miyashiro, N., Takashima, Y., Uchihori, Y. Low 134Cs/137Cs ratio anomaly in the north-northwest direction from the Fukushima Dai-ichi Nuclear Power Station. J. Environ. Radioact. 2017, 178–179. 84–94.
Mikami, S. et al. Spatial distribution of radionuclides deposited onto ground soil around the Fukushima Dai-ichi Nuclear Power Plant and their temporal change until 2012. J. Environ. Radioact. 139, 320–343 (2015).
Google Scholar
Fujiwara, T. et al. Isotopic ratio and vertical distribution of radionuclides in soil affected by the accident of Fukushima Dai-ichi nuclear power plant. J. Environ. Radioact. 113, 37–44 (2012).
Google Scholar
Shimada, A., Tsukahara, T., Nomura, M., Kim, M.S., Shimada, T., Takeda, S., Yamaguchi, T. Determination of 135Cs/137Cs isotopic ratio in soil collected near Fukushima Daiichi Nuclear Power Station through mass spectrometry. J. Nucl. Sci. Technol. Accepted.
Muramatsu, Y., Matsuzaki, H., Toyama, C. & Ohno, T. Analysis of 129I in the soils of Fukushima Prefecture: preliminary reconstruction of 131I deposition related to the accident at Fukushima Daiichi Nuclear Power Plant (FDNPP). J. Environ. Radioact. 139, 344–350 (2015).
Google Scholar
Ebihara, M., Oura, Y., Shirai, N., Nagakawa, Y., Sakurai, N., Haba, H., Matsuzaki, H., Tsuruta, H., Moriguchi, Y. J. Environ. Radioact. 2019, 208–209, 106000.
Tagami, K., Uchida, S., Ishii, N. & Zheng, J. Estimation of Te-132 Distribution in Fukushima Prefecture at the Early stage of the Fukushima Daiichi Nuclear Power Plant reactor failure. Environ. Sci. Technol. 47, 5007–5012 (2013).
Google Scholar
Shimada, A. et al. Development of a separation method for molybdenum from zirconium, niobium, and major elements of rubble samples. J. Chromatgr. A 1371, 163–167 (2014).
Google Scholar
Shimada, A., Sakatani, K., Kameo, Y. & Takahashi, K. Determination of 129I in the accumulated radioactive water and processing water of the Fukushima Daiichi Nuclear Power Plant. J. Radioanal. Nucl. Chem. 303(2), 1137–1140 (2015).
Google Scholar
Shimada, A., Ozawa, M., Kameo, Y., Yasumatsu, T., Nebashi, K., Niiyama, T., Seki, S., Kajio, M., Takahashi, K. Development of a rapid analytical method for 129I in the contaminated water and tree samples at the Fukushima Daiichi Nuclear Power Station. Nuclear Back-End and Transmutation Technology for Waste Disposal. 2015, 311–317.
Osborne, M. F., Collins, J. L., Lorenz, R. A., Norwood, K. S. Measuremnt and characterization of fission products released from LWR fuel. CONF-840914–28. 1984.
Lin, C. C. Chemical behavior of radioiodine in BWR systems. J. Inorg. Nucl. Chem. 42, 1093–1099 (1980).
Google Scholar
Tigeras, A., Bachet, M., Catalette, H. & Simoni, E. PWR iodine speciation and behavior under normal primary coolant conditions: an analysis of thermodynamic calculations, sensibility evaluations and NPP feedback. Prog. Nucl. Energy 53, 504–515 (2011).
Google Scholar
Nishihara, K. , Iwamoto, H., Suyama, K. Estimation of fuel composition in Fukushima-Daiichi nuclear power plant. Tokai-mura (Japan) Japan Atomic Energy Agency, 2012, JAEA-Data/Code 2012–018 [in Japanese].
Xu, A. et al. Iodine isotopes in precipitation: Four-year time series variations before and after 2011 Fukushima nuclear accident. J. Environ. Radioact. 155–156, 38–45 (2016).
Google Scholar
Hou, X., Povinec, P. P., Zhang, L., Shi, K., Biddulph, D., Chang, C.-C., Fan, Y., Golser, R., Hou, Y., Jeskovsky, M., Jull, A.J.T., Liu, Q., Luo, M., Steier, P., Zhou, W. Iodine-129 in seawater offshore Fukushima: Distribution, inorganic speciation, sources, and budget. Environ, Sci. Technol. 2013, 47, 3091–3098.
Nuclear Data Center, Table of nuclear data, https://wwwndc.jaea.go.jp/NuC/index.html
Pontillon, Y. & Ducros, G. Behavior of fission products under sever PWR accident conditions The VERCORES experimental programme-Part 2: Release and transport of fission gases and volatile fission products. Nucl. Eng. Des. 240, 1853–1866 (2010).
Google Scholar
Smedley, P. L. & Kinniburgh, D. G. Molybudenum in natural waters: a review of occurrence, distributions and controls. Appl. Geochem. 84, 387–432 (2017).
Google Scholar
Tokyo Electric Power Company Holdings, Transition of radioactivity concentrations and air dose rate at the Fukushima Daiichi Nuclear Power Station. https://www.tepco.co.jp/nu/fukushima-np/images/handouts_111203_01-j.pdf. Accessed at 9th May 2021. In Japanese.
Komori, M., Shozugawa, K., Nogawa, N. & Matsuo, M. Evaluation of radioactive contamination caused by each plant of Fukushima Daiichi Nuclear Power Station using 134Cs/137Cs activity ratio as an Index. Bunseki Kagaku 62(6), 475–483 (2013) (In Japanese).
Google Scholar
Nishihara, K. et al. Radionuclide release to stagnant water in the Fukushima-1 nuclear power plant. J. Nucl. Sci. Technol. 52(3), 310–307 (2015).
Guenther, R. J., Blahnik, D. E., Campbell, T. K., Jenquin, U. P., Mendel, J. E., Thomas, L. E., Thornhill, C. K. Characterization of spent fuel approved testing material – ATM-105. PNL-5109–105, 1991.
Snow, M. S., Snyder, D. C. & Delmore, J. E. Fukushima Daiichi reactor source term attribution using cesium isotope ratios from contaminated environmental samples. Rapid Commun. Mass Spectrom. 30, 523–532 (2016).
Google Scholar
Asai, S., Okano, M. & Kameo, Y. Analysis of 89Sr and 90Sr in stagnant water of turbine building of the Fukushima Daiichi Nuclear Power Station. Radiochemistry News 25, 25–28 (2012) (In Japanese).
Sato, Y., Tanaka, K., Ueno, T., Ishimori, K. & Kameo, Y. Radiochemical analysis of rubble collected from Fukushima Daiichi Nuclear Power Station. Jpn. J. Health Phys. 51(4), 209–217 (2016).
Google Scholar
Tanaka, K. et al. Radiochemical analysis of rubble and trees collected from Fukushima Daiichi Nuclear Power Station. J. Nucl. Sci. Technol. 51(7–8), 1032–1043 (2014).
Google Scholar
Koma, Y., Shibata, A. & Ashida, T. Radioactive contamination of several materials following the Fukushima Daiichi Nuclear Power Station accident. Nucl. Mater. Energy 10, 35–41 (2017).
Steinhauser, G., Schauer, V. & Shozugawa, K. Concentration of strontium-90 at selected hot spots in Japan. PLOS ONE 8(3), e57760 (2013).
Google Scholar
Mishra, S., Sahoo, S. K., Arae, H., Watanabe, Y. & Mieteiski, J. W. Activity ratio of caesium, strontium and uranium with site specific distribution coefficient in contaminated soil near vicinity of Fukushima Daiichi Nuclear Power Plant. J. Chromatogr. Sep. Tech. 5(6), 1000250 (2014).
Zhang, Z. et al. Activity of 90Sr in fallout particles collected in the difficult-to-return zone around the Fukushima Daiichi Nuclear Power Plant. Environ. Sci. Technol. 53, 5868–5876 (2019).
Google Scholar
Zhang, Z., Ninomiya, K., Yamaguchi, Y., Kita, K., Tsuruta, H., Igarashi, Y., Shinohara, A. Atmospheric activity concentration of 90Sr and 137Cs after the Fukushima Daiichi Nuclear accident. Environ, Sci. Technol. 2018, 52, 9917–9925.
Pontillon, Y., Ducros, Malgouyres, P.P. Behavior of fission products under sever PWR accident conditions The VERCORES experimental programme-Part 1: general description of the programme. Nucl. Eng. Des. 2010, 240, 1843–1852.
[ad_2]
Originally Appeared Here